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For years, the drilling industry has fo-
cused on optimizing bottom-hole assem-
blies to improve drilling performance. 
Since the last 90 feet of a drill string are 
its costliest components and the ones 
with the biggest financial impact, incre-
mental changes to the BHA can help 
drillers consistently deliver high-quality 
wells at a low cost. 

But reviewing BHA data to make ad-
justments is only one component of per-
fecting the drilling process. To maximize 
performance, operators and service com-
panies will need to adopt comprehensive 

data collection that combines knowledge 
of the BHA with other practices, in-
cluding quality control behaviors, con-
tinuous improvement initiatives and data 
science. The holistic data should be or-
ganized well enough that companies can 
track improvement trends and flag con-
cerning indicators. 

The easier it is for companies to lever-
age the data, the more valuable it will 
become. For data collection to be sus-
tainable, the link between it and continuous 
improvement must be clear. 

Figure 1 shows some of the informa-
tion a drilling data ecosystem should 
contain. Since BHA components at the 

rig are owned by a complex web of tool 
manufacturers, getting such diverse, ho-
listic data can be challenging, a reality 
that is particularly noticeable when an 
emergency occurs and data must be re-
trieved quickly. Fortunately, comprehen-
sive data’s benefits more than justify 
the effort to collect it. 

A Case In Point 

Consider a Permian Basin operator 
that was having communication problems 
with a rotary steerable system. The RSS 
communicated using mud pulse telemetry, 
which sends information to the surface 
by restricting fluid flow to create pressure 
pulses. Such telemetry became unreliable 
as wear on the radial bearing allowed ad-
ditional fluid to bypass the tool through 
the bearing assembly.  

Communication issues could happen 
even though the motor bearing’s fit met 
the criteria for reuse established by the 
engineering team that designed the motor. 
Instead of looking at a specific application, 
these criteria attempt to accommodate 
all drilling conditions. Ideally, the standard 
fit allows some bypass to ensure drilling 
fluid can lubricate and cool the bearings 
during drilling, but remains tight enough 
to stabilize the bit box mandrel and endure 
loads from the power section as they 
transfer to the bit. 

Motor bearings frequently are organized 
with two male and female bearing pairs 
configured as an upper and lower, with 
the lower bearing closest to the bit. Bear-
ings usually are coated with a wear-re-
sistant carbide on the outer diameter of 
the male bearing and the inner diameter 
of the female bearing. 

When assembling motors, the tool 
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manufacturer will mix and match the 
male and female pairs to ensure the 
bearing fit meets the design team’s all-
purpose specification. Little to no con-
sideration goes to the application in which 
the motor will be used. So long as the 
bearing meets the standard manufacturing 
tolerance, it is deemed suitable. 

Quality Control 

Quality control is essential to verify 
that mud motors and other downhole 
tools will perform as expected. As the 
industry seeks to solve BHA tool chal-
lenges with data, several quality control 
mechanisms need to be examined. 

The first is the third-party nondestruc-
tive testing conducted between BHA tool 
trips to ensure equipment can run another 
time without failing. Today, the industry 
standard is for the company performing 
the nondestructive testing to be inde-
pendent of the manufacturer. In theory, 
that encourages inspectors to evaluate 
the tool objectively and choose the most 
reliable equipment for the job. 

Unfortunately, living up to that ideal 
can be challenging for even the most ded-
icated and conscientious inspectors. NDT 
companies work within the walls of tool 
manufacturers every day and naturally 
build strong relationships with those man-
ufacturers rather than the operators they 
are supposed to look after but rarely see. 
Furthermore, the NDT company bills the 
tool manufacturer and relies on its pa-
tronage to remain in business.  

These close ties undermine objectivity. 
Even without intentionally doing so, the 
tool manufacturer can exert extreme 
pressure on the NDT company to approve 
equipment that is questionable or should 
not be used at all.  

Third-Party Monitors 

To eliminate that pressure and improve 
BHA reliability, many operators have begun 
hiring third-party inspection services them-
selves. This approach requires the operator’s 
chosen third-party to be present during the 
entire process of preparing a tool to ship 
to the rig, including the tool’s selection, 
NDT inspection, repair and maintenance, 
and final logistics. While such third-party 
monitors may be unfamiliar with each tool, 
they are very well-versed in quality training 
and most American Petroleum Institute 
and DS-1® drilling tool guidelines.  

Employing inspection services directly 
has two shortcomings. First, because the 
operators’ inspectors must be present, it 
adds significant costs to tool deployment, 
including both direct costs and indirect 

costs from slowing the process. 
The other major drawback is how this 

service is measured as a success. There is 
a well understood feeling in the oil patch 
that an auditor who fails to find any issues 
is slacking off. As a result, many consider 
“number of findings” a major key per-
formance indicator for inspectors. That 
works fine initially, but as quality improves, 
it has an unintended consequence: Even-
tually, the list of findings devolves into a 
chronicle of small, minor issues that are 
unlikely to impact drilling performance.  

The TH Hill Manual for DS-1, which 
establishes and maintains many of the 
quality processes and criteria necessary 
when evaluating the drill string, sometimes 
reinforces the focus on inconsequential 
issues. While the manual leaves some 
leeway in how BHA tools should be eval-
uated, it largely is a one-size-fits-all stan-
dard. To ensure quality and uniformity 
across applications, it favors more thorough 
inspections even when the extra work 
can be superfluous. 

Whether they are deployed in offshore 
or onshore environments, BHA compo-
nents must perform in vastly different 
circumstances. The one-size-fits-all ap-
proach is not the best one for any drilling 
program, and it can have the side effect 
of increasing costs. 

The standard also contains many gray 
areas with which the supply chain must 
wrestle. These gray areas can be a great 
source of consternation and do not neces-
sarily lead to the most important outcome, 
which is a better tool down hole for the 

customer at the most economic rate. 

Targeted Guidelines 

Rather than relying on general stan-
dards, some operators develop their own 
quality guidelines to fine-tune requirements 
to a particular drilling program’s risks. 
Such customization is useful and should 
be in every operator’s toolkit, but it is 
very challenging to keep application-spe-
cific standards up-to-date, given how 
quickly downhole tool technology evolves. 
Custom standards also tend to explode 
in complexity as additional circumstances 
and drilling challenges become relevant. 

Digital tools can empower operators 
to offer application-specific guidelines 
that keep pace with modern tools and re-
main user-friendly. To illustrate, let’s 
return to the Permian Basin operator who 
experienced RSS communication issues 
as bearing wear allowed more fluid through 
the motor’s bypass. 

To run the motor of choice without 
those issues, the operator needed the 
ability to preselect the acceptable bearing 
fit based on expected motor conditions. 
In case the actual conditions deviated 
from the plan, the wear prediction process 
had to be simple enough to run repeatedly 
during drilling so the operator could see 
likely changes in bearing fit. 

A simplistic prediction technique in-
volves associating bearing wear with the 
number of hours the motor ran. Unfortu-
nately, this approach is impractical, as 
how much wear the motor experiences 
during each hour varies based on the 
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drilling conditions and a multitude of 
other factors. The variation is so high 
that suppliers would have to build in a 
large margin of error, leading to higher 
costs and inventory stress. 

The operator can resolve the RSS 
communication issues by buying new 
bearings for each run, but that would 
have been expensive and wasteful even 
if the bearings had been available. Given 
the limited inventory, that approach was 
impossible. Instead, the operator sought 
a better way to predict wear. 

Building a True Model 

Machine learning offered a solution. 
With sufficient data, an ML algorithm can 
estimate bearing wear accurately enough 
to provide a useful inspection standard.   

Fortunately, the operator had detailed 
data on its past runs. A select dataset 
was compiled into a matrix consisting 
of data related to the motor assembly’s 
pre-run condition, electronic data recorder, 
mud log, motor run, bit and post-run in-
spection. Information in these datasets 
included power section type, pre-run 
bearing measurements, motor bend degree, 
bearing coating, stabilization, amount of 
time the motor ran, motor depth, time 

rotating versus sliding, build angles while 
drilling, weight on bit, mud properties 
and post-run bearing measurements.  

The dataset contained 468 unique in-
stances of the preferred motor with all 
the other relevant features; 80% of the 
instances were randomly selected to train 
the model. The other 20% were set aside 
for validating the model’s ability to predict 
bearing fit after disassembly. After being 
fed all the pre-run, EDR and mud data, 
the model was expected to forecast bearing 
fit within a thousandth of an inch. 

This dataset was fed into a stacked en-
semble model, combining four base models. 
As Figure 2 notes, those models were:  

·   A gradient boosting machine;  
·   A distributed random forest; 
·   Deep learning; and  
·   A generalized linear model.  
The meta-learner algorithm that is used 

to combine the base models’ predictions 
is an elastic-net regularized generalized 
linear model. 

To assess and help prevent overfit-
ting—the chance that the model would 
produce inaccurate predictions by giving 
too much weight to eccentricities in the 
training data—the model was evaluated 
using five folds in cross-validation. Overall, 

the stacked ensemble leveraged the com-
plementary strengths of the base models, 
resulting in strong performance and achiev-
ing both high accuracy and generalization 
on the given dataset. 

Accurate Results 

The validation data indicates that the 
ML model used for predicting bearing fits 
performs very well, with low values for 
the root mean squared error, mean absolute 
error and root mean squared logarithmic 
error. The residual deviance and the null 
deviance values suggest that the model 
explains an overwhelming portion of the 
variance in the data. Table 1 presents the 
values for these metrics and a few others. 

The model was trained to predict a 
value that had an average fit of .038 inches. 
The error rates are extremely small, with 
more than 50% of the error density within 
5% of the actual measured size. This trans-
lates to more than half the predictions 
being within .0019 inches of the actual 
measured fit. All the error sample means 
are within 10% or .0038 inches of the 
actual measured fit (Figure 3). 

Once the bearing fit predictor model 
was complete, the operator had a quick 
way to pre-qualify a bearing fit suitable 
for the expected drilling needs. The 
operator could supply an assumed num-
ber of hours, the motor configuration 
and the mud type to produce a bearing 
range that would prevent communication 
problems.  

Additionally, the model could be fed 
real time EDR and mud data to estimate 
the current bearing fit, as well as produce a 
spline model forecasting what the bypass 
would be within a cone of certainty. These 
real-time updates enabled the operator to 
anticipate possible communication issues 
before they occurred and plan accordingly. 

The existing quality plan then was 
updated with a framework to communicate 
the bearing tolerance window before the 
motor was built, ensuring the correct fit 
was obtained before additional motors 
arrived at the rig.  

This solution was only possible because 
of groundwork laid ahead of time. Long 
before RSS communication issues arose, 
the operator committed to collecting, or-
ganizing and storing data. The specific 
dataset intentionally included both good 
runs and bad runs. This information was 
captured in a cloud-based system that 
could collect data from multiple tool 
manufacturing sites in real time, as well 
as from the rig while drilling. 

Finally, the feedback loop of collecting 
data, reviewing that data to extract mean-
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Performance Metrics for Motor Fit Prediction Model
Metric Value

Root Mean Squared Error 0.003083

Mean Absolute Error 0.001904

Root Mean Squared Logarithmic Error 0.002889

Mean Residual Deviance 0.00001

Residual Deviance 0.00445

Null Deviance 0.116436

Null Degrees of Freedom 467

Residual Degree of Freedom 457

TABLE 1



ingful signals, and adjusting the quality 
plan was embraced by both the operator 
and its suppliers. This support enabled the 
learned solution to be instantly inserted 
into the supply chain flow with little dis-
ruption. 

The mud motor supplier and other 
manufacturers appreciated the applica-
tion-specific quality plans because they 
allowed subcomponents to be selected 
based on need. This saves money by free-

ing suppliers to draw from a broad pool 
rather than restricting themselves to new 
parts, regardless of the situation. 

As machine learning tools continue 
to advance and collecting data gets easier, 
creating need-based quality standards 
will become increasingly common. It re-
duces unnecessary costs and risks for 
operators, gives suppliers flexibility that 
can translate into higher margins and 
faster delivery times, and helps inde-

pendent inspectors concentrate on the 
most meaningful work. 

But to take advantage of these emerging 
capabilities, operators and service com-
panies must make collecting and retaining 
holistic data one of the foundational 
tenants of their operations. Fortunately, 
improving inspections is only one of 
many applications for the data. It will 
pay as-yet-unimagined dividends for 
decades to come. ❒
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